MakeItFrom.com
Menu (ESC)

EN 1.1132 Steel vs. EN AC-21100 Aluminum

EN 1.1132 steel belongs to the iron alloys classification, while EN AC-21100 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.1132 steel and the bottom bar is EN AC-21100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 140
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 12 to 24
6.2 to 7.3
Fatigue Strength, MPa 180 to 280
79 to 87
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 370 to 490
340 to 350
Tensile Strength: Yield (Proof), MPa 240 to 400
210 to 240

Thermal Properties

Latent Heat of Fusion, J/g 250
390
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
670
Melting Onset (Solidus), °C 1420
550
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 51
130
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
34
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
100

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
11
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 1.4
8.0
Embodied Energy, MJ/kg 18
150
Embodied Water, L/kg 46
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 110
19 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 430
300 to 400
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 13 to 17
31 to 33
Strength to Weight: Bending, points 15 to 18
36 to 37
Thermal Diffusivity, mm2/s 14
48
Thermal Shock Resistance, points 12 to 16
15

Alloy Composition

Aluminum (Al), % 0
93.4 to 95.7
Carbon (C), % 0.13 to 0.17
0
Copper (Cu), % 0 to 0.25
4.2 to 5.2
Iron (Fe), % 98.6 to 99.57
0 to 0.19
Manganese (Mn), % 0.3 to 0.6
0 to 0.55
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0 to 0.18
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1