MakeItFrom.com
Menu (ESC)

EN 1.1147 Steel vs. CC753S Brass

EN 1.1147 steel belongs to the iron alloys classification, while CC753S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.1147 steel and the bottom bar is CC753S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 140
100
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 12 to 17
17
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 390 to 470
340
Tensile Strength: Yield (Proof), MPa 280 to 370
170

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
120
Melting Completion (Liquidus), °C 1460
820
Melting Onset (Solidus), °C 1420
780
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 51
99
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
26
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
29

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
23
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.4
2.8
Embodied Energy, MJ/kg 18
47
Embodied Water, L/kg 46
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 73
47
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 370
140
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 14 to 17
12
Strength to Weight: Bending, points 15 to 17
13
Thermal Diffusivity, mm2/s 14
32
Thermal Shock Resistance, points 12 to 15
11

Alloy Composition

Aluminum (Al), % 0
0.4 to 0.8
Antimony (Sb), % 0
0 to 0.050
Carbon (C), % 0.15 to 0.19
0
Copper (Cu), % 0 to 0.25
56.8 to 60.5
Iron (Fe), % 98.3 to 99.25
0.5 to 0.8
Lead (Pb), % 0
1.8 to 2.5
Manganese (Mn), % 0.6 to 0.9
0 to 0.2
Nickel (Ni), % 0
0.5 to 1.2
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.3
0 to 0.050
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.8
Zinc (Zn), % 0
33.1 to 40