MakeItFrom.com
Menu (ESC)

EN 1.1152 Steel vs. AISI 441 Stainless Steel

Both EN 1.1152 steel and AISI 441 stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.1152 steel and the bottom bar is AISI 441 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 160
170
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 12 to 22
23
Fatigue Strength, MPa 190 to 300
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 290 to 340
300
Tensile Strength: Ultimate (UTS), MPa 400 to 550
470
Tensile Strength: Yield (Proof), MPa 270 to 440
270

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 400
910
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 52
23
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
13
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.4
2.8
Embodied Energy, MJ/kg 18
41
Embodied Water, L/kg 46
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 110
92
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 530
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 14 to 19
17
Strength to Weight: Bending, points 15 to 19
17
Thermal Diffusivity, mm2/s 14
6.1
Thermal Shock Resistance, points 13 to 17
16

Alloy Composition

Carbon (C), % 0.18 to 0.22
0 to 0.030
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 98.6 to 99.52
76 to 82.2
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0
0.3 to 0.9
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030
Titanium (Ti), % 0
0.1 to 0.5