MakeItFrom.com
Menu (ESC)

EN 1.1152 Steel vs. EN 1.0536 Steel

Both EN 1.1152 steel and EN 1.0536 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.1152 steel and the bottom bar is EN 1.0536 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 160
210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12 to 22
18
Fatigue Strength, MPa 190 to 300
340
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 290 to 340
440
Tensile Strength: Ultimate (UTS), MPa 400 to 550
710
Tensile Strength: Yield (Proof), MPa 270 to 440
510

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
51
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.7
Embodied Energy, MJ/kg 18
24
Embodied Water, L/kg 46
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 530
690
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 14 to 19
25
Strength to Weight: Bending, points 15 to 19
23
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 13 to 17
22

Alloy Composition

Aluminum (Al), % 0
0.010 to 0.050
Carbon (C), % 0.18 to 0.22
0.16 to 0.22
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 98.6 to 99.52
97.2 to 98.4
Manganese (Mn), % 0.3 to 0.6
1.3 to 1.7
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.3
0.1 to 0.5
Sulfur (S), % 0 to 0.025
0 to 0.035
Vanadium (V), % 0
0.080 to 0.15