MakeItFrom.com
Menu (ESC)

EN 1.1152 Steel vs. Grade 4 Titanium

EN 1.1152 steel belongs to the iron alloys classification, while grade 4 titanium belongs to the titanium alloys. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.1152 steel and the bottom bar is grade 4 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 160
200
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 22
17
Fatigue Strength, MPa 190 to 300
340
Poisson's Ratio 0.29
0.32
Reduction in Area, % 63 to 73
28
Shear Modulus, GPa 73
41
Shear Strength, MPa 290 to 340
390
Tensile Strength: Ultimate (UTS), MPa 400 to 550
640
Tensile Strength: Yield (Proof), MPa 270 to 440
530

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 52
19
Thermal Expansion, µm/m-K 12
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
6.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
31
Embodied Energy, MJ/kg 18
500
Embodied Water, L/kg 46
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41 to 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 530
1330
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 14 to 19
40
Strength to Weight: Bending, points 15 to 19
37
Thermal Diffusivity, mm2/s 14
7.6
Thermal Shock Resistance, points 13 to 17
46

Alloy Composition

Carbon (C), % 0.18 to 0.22
0 to 0.080
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 98.6 to 99.52
0 to 0.5
Manganese (Mn), % 0.3 to 0.6
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
98.6 to 100
Residuals, % 0
0 to 0.4