EN 1.1158 Steel vs. SAE-AISI 1025 Steel
Both EN 1.1158 steel and SAE-AISI 1025 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.
For each property being compared, the top bar is EN 1.1158 steel and the bottom bar is SAE-AISI 1025 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 140 to 150 | |
130 to 140 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 23 to 24 | |
17 to 28 |
Fatigue Strength, MPa | 170 to 220 | |
190 to 280 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
73 |
Shear Strength, MPa | 300 to 320 | |
290 to 310 |
Tensile Strength: Ultimate (UTS), MPa | 470 to 500 | |
450 to 500 |
Tensile Strength: Yield (Proof), MPa | 240 to 310 | |
250 to 420 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Maximum Temperature: Mechanical, °C | 400 | |
400 |
Melting Completion (Liquidus), °C | 1460 | |
1460 |
Melting Onset (Solidus), °C | 1420 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 49 | |
52 |
Thermal Expansion, µm/m-K | 12 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.2 | |
6.9 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.2 | |
8.0 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.1 | |
1.8 |
Density, g/cm3 | 7.8 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
1.4 |
Embodied Energy, MJ/kg | 19 | |
18 |
Embodied Water, L/kg | 47 | |
45 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 89 to 110 | |
80 to 110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 150 to 250 | |
170 to 470 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 17 to 18 | |
16 to 18 |
Strength to Weight: Bending, points | 17 to 18 | |
17 to 18 |
Thermal Diffusivity, mm2/s | 13 | |
14 |
Thermal Shock Resistance, points | 15 to 16 | |
14 to 16 |
Alloy Composition
Carbon (C), % | 0.22 to 0.29 | |
0.22 to 0.28 |
Chromium (Cr), % | 0 to 0.4 | |
0 |
Iron (Fe), % | 97.6 to 99.38 | |
99.03 to 99.48 |
Manganese (Mn), % | 0.4 to 0.7 | |
0.3 to 0.6 |
Molybdenum (Mo), % | 0 to 0.1 | |
0 |
Nickel (Ni), % | 0 to 0.4 | |
0 |
Phosphorus (P), % | 0 to 0.035 | |
0 to 0.040 |
Silicon (Si), % | 0 to 0.4 | |
0 |
Sulfur (S), % | 0 to 0.035 | |
0 to 0.050 |