MakeItFrom.com
Menu (ESC)

EN 1.1158 Steel vs. C95520 Bronze

EN 1.1158 steel belongs to the iron alloys classification, while C95520 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.1158 steel and the bottom bar is C95520 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 150
280
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 23 to 24
2.6
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
44
Tensile Strength: Ultimate (UTS), MPa 470 to 500
970
Tensile Strength: Yield (Proof), MPa 240 to 310
530

Thermal Properties

Latent Heat of Fusion, J/g 250
240
Maximum Temperature: Mechanical, °C 400
240
Melting Completion (Liquidus), °C 1460
1070
Melting Onset (Solidus), °C 1420
1020
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 49
40
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
12

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
29
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.4
3.6
Embodied Energy, MJ/kg 19
58
Embodied Water, L/kg 47
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
21
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 250
1210
Stiffness to Weight: Axial, points 13
8.0
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 17 to 18
33
Strength to Weight: Bending, points 17 to 18
27
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 15 to 16
33

Alloy Composition

Aluminum (Al), % 0
10.5 to 11.5
Carbon (C), % 0.22 to 0.29
0
Chromium (Cr), % 0 to 0.4
0 to 0.050
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
74.5 to 81.3
Iron (Fe), % 97.6 to 99.38
4.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.4 to 0.7
0 to 1.5
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
4.2 to 6.0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.4
0 to 0.15
Sulfur (S), % 0 to 0.035
0
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5