EN 1.1158 Steel vs. S64512 Stainless Steel
Both EN 1.1158 steel and S64512 stainless steel are iron alloys. They have 84% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is EN 1.1158 steel and the bottom bar is S64512 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 140 to 150 | |
330 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
200 |
Elongation at Break, % | 23 to 24 | |
17 |
Fatigue Strength, MPa | 170 to 220 | |
540 |
Impact Strength: V-Notched Charpy, J | 28 to 40 | |
47 |
Poisson's Ratio | 0.29 | |
0.28 |
Shear Modulus, GPa | 73 | |
76 |
Shear Strength, MPa | 300 to 320 | |
700 |
Tensile Strength: Ultimate (UTS), MPa | 470 to 500 | |
1140 |
Tensile Strength: Yield (Proof), MPa | 240 to 310 | |
890 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
270 |
Maximum Temperature: Mechanical, °C | 400 | |
750 |
Melting Completion (Liquidus), °C | 1460 | |
1460 |
Melting Onset (Solidus), °C | 1420 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 49 | |
28 |
Thermal Expansion, µm/m-K | 12 | |
10 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.2 | |
3.6 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.2 | |
4.1 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.1 | |
10 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
3.3 |
Embodied Energy, MJ/kg | 19 | |
47 |
Embodied Water, L/kg | 47 | |
110 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 89 to 110 | |
180 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 150 to 250 | |
2020 |
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
25 |
Strength to Weight: Axial, points | 17 to 18 | |
40 |
Strength to Weight: Bending, points | 17 to 18 | |
31 |
Thermal Diffusivity, mm2/s | 13 | |
7.5 |
Thermal Shock Resistance, points | 15 to 16 | |
42 |
Alloy Composition
Carbon (C), % | 0.22 to 0.29 | |
0.080 to 0.15 |
Chromium (Cr), % | 0 to 0.4 | |
11 to 12.5 |
Iron (Fe), % | 97.6 to 99.38 | |
80.6 to 84.7 |
Manganese (Mn), % | 0.4 to 0.7 | |
0.5 to 0.9 |
Molybdenum (Mo), % | 0 to 0.1 | |
1.5 to 2.0 |
Nickel (Ni), % | 0 to 0.4 | |
2.0 to 3.0 |
Nitrogen (N), % | 0 | |
0.010 to 0.050 |
Phosphorus (P), % | 0 to 0.035 | |
0 to 0.025 |
Silicon (Si), % | 0 to 0.4 | |
0 to 0.35 |
Sulfur (S), % | 0 to 0.035 | |
0 to 0.025 |
Vanadium (V), % | 0 | |
0.25 to 0.4 |