MakeItFrom.com
Menu (ESC)

EN 1.1170 Steel vs. Grade Ti-Pd8A Titanium

EN 1.1170 steel belongs to the iron alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.1170 steel and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 210
200
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 16 to 17
13
Fatigue Strength, MPa 220 to 330
260
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 640 to 730
500
Tensile Strength: Yield (Proof), MPa 330 to 500
430

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 50
21
Thermal Expansion, µm/m-K 12
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.5
49
Embodied Energy, MJ/kg 19
840
Embodied Water, L/kg 49
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91 to 100
65
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 670
880
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 23 to 26
31
Strength to Weight: Bending, points 21 to 23
31
Thermal Diffusivity, mm2/s 13
8.6
Thermal Shock Resistance, points 20 to 23
39

Alloy Composition

Carbon (C), % 0.25 to 0.32
0 to 0.1
Chromium (Cr), % 0 to 0.4
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 96.7 to 98.5
0 to 0.25
Manganese (Mn), % 1.3 to 1.7
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.035
0
Titanium (Ti), % 0
98.8 to 99.9
Residuals, % 0
0 to 0.4