MakeItFrom.com
Menu (ESC)

EN 1.1181 Steel vs. Grade 35 Titanium

EN 1.1181 steel belongs to the iron alloys classification, while grade 35 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.1181 steel and the bottom bar is grade 35 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 19 to 20
5.6
Fatigue Strength, MPa 190 to 260
330
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
41
Shear Strength, MPa 350 to 390
580
Tensile Strength: Ultimate (UTS), MPa 560 to 620
1000
Tensile Strength: Yield (Proof), MPa 280 to 380
630

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1460
1630
Melting Onset (Solidus), °C 1420
1580
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 42
7.4
Thermal Expansion, µm/m-K 11
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
37
Density, g/cm3 7.8
4.6
Embodied Carbon, kg CO2/kg material 1.4
33
Embodied Energy, MJ/kg 19
530
Embodied Water, L/kg 47
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 110
49
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 380
1830
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 20 to 22
61
Strength to Weight: Bending, points 19 to 21
49
Thermal Diffusivity, mm2/s 11
3.0
Thermal Shock Resistance, points 19 to 21
70

Alloy Composition

Aluminum (Al), % 0
4.0 to 5.0
Carbon (C), % 0.32 to 0.39
0 to 0.080
Chromium (Cr), % 0 to 0.4
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 97.4 to 99.18
0.2 to 0.8
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 0 to 0.1
1.5 to 2.5
Nickel (Ni), % 0 to 0.4
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.4
0.2 to 0.4
Sulfur (S), % 0 to 0.035
0
Titanium (Ti), % 0
88.4 to 93
Vanadium (V), % 0
1.1 to 2.1
Residuals, % 0
0 to 0.4