MakeItFrom.com
Menu (ESC)

EN 1.1191 Steel vs. EN 1.4525 Stainless Steel

Both EN 1.1191 steel and EN 1.4525 stainless steel are iron alloys. They have 76% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.1191 steel and the bottom bar is EN 1.4525 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16 to 17
5.6 to 13
Fatigue Strength, MPa 210 to 290
480 to 540
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
76
Tensile Strength: Ultimate (UTS), MPa 630 to 700
1030 to 1250
Tensile Strength: Yield (Proof), MPa 310 to 440
840 to 1120

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 400
860
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 48
18
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
13
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
2.8
Embodied Energy, MJ/kg 19
39
Embodied Water, L/kg 47
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 100
68 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 510
1820 to 3230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22 to 25
36 to 45
Strength to Weight: Bending, points 21 to 22
29 to 33
Thermal Diffusivity, mm2/s 13
4.7
Thermal Shock Resistance, points 20 to 22
34 to 41

Alloy Composition

Carbon (C), % 0.42 to 0.5
0 to 0.070
Chromium (Cr), % 0 to 0.4
15 to 17
Copper (Cu), % 0
2.5 to 4.0
Iron (Fe), % 97.3 to 99.08
70.4 to 79
Manganese (Mn), % 0.5 to 0.8
0 to 1.0
Molybdenum (Mo), % 0 to 0.1
0 to 0.8
Nickel (Ni), % 0 to 0.4
3.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 0.4
0 to 0.8
Sulfur (S), % 0 to 0.035
0 to 0.025