MakeItFrom.com
Menu (ESC)

EN 1.1191 Steel vs. Nickel 686

EN 1.1191 steel belongs to the iron alloys classification, while nickel 686 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.1191 steel and the bottom bar is nickel 686.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
220
Elongation at Break, % 16 to 17
51
Fatigue Strength, MPa 210 to 290
410
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
77
Shear Strength, MPa 380 to 430
560
Tensile Strength: Ultimate (UTS), MPa 630 to 700
780
Tensile Strength: Yield (Proof), MPa 310 to 440
350

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 400
980
Melting Completion (Liquidus), °C 1460
1380
Melting Onset (Solidus), °C 1420
1340
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 48
9.8
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
70
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 1.4
12
Embodied Energy, MJ/kg 19
170
Embodied Water, L/kg 47
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 100
320
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 510
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 22 to 25
24
Strength to Weight: Bending, points 21 to 22
21
Thermal Diffusivity, mm2/s 13
2.6
Thermal Shock Resistance, points 20 to 22
21

Alloy Composition

Carbon (C), % 0.42 to 0.5
0 to 0.010
Chromium (Cr), % 0 to 0.4
19 to 23
Iron (Fe), % 97.3 to 99.08
0 to 5.0
Manganese (Mn), % 0.5 to 0.8
0 to 0.75
Molybdenum (Mo), % 0 to 0.1
15 to 17
Nickel (Ni), % 0 to 0.4
49.5 to 63
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 0.080
Sulfur (S), % 0 to 0.035
0 to 0.020
Titanium (Ti), % 0
0.020 to 0.25
Tungsten (W), % 0
3.0 to 4.4