MakeItFrom.com
Menu (ESC)

EN 1.1191 Steel vs. C27200 Brass

EN 1.1191 steel belongs to the iron alloys classification, while C27200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.1191 steel and the bottom bar is C27200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 16 to 17
10 to 50
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 72
40
Shear Strength, MPa 380 to 430
230 to 320
Tensile Strength: Ultimate (UTS), MPa 630 to 700
370 to 590
Tensile Strength: Yield (Proof), MPa 310 to 440
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
130
Melting Completion (Liquidus), °C 1460
920
Melting Onset (Solidus), °C 1420
870
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 48
120
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
28
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
31

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
24
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 19
45
Embodied Water, L/kg 47
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 100
30 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 510
110 to 810
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22 to 25
13 to 20
Strength to Weight: Bending, points 21 to 22
14 to 19
Thermal Diffusivity, mm2/s 13
37
Thermal Shock Resistance, points 20 to 22
12 to 20

Alloy Composition

Carbon (C), % 0.42 to 0.5
0
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0
62 to 65
Iron (Fe), % 97.3 to 99.08
0 to 0.070
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.035
0
Zinc (Zn), % 0
34.6 to 38
Residuals, % 0
0 to 0.3