MakeItFrom.com
Menu (ESC)

EN 1.1203 Steel vs. ACI-ASTM CT15C Steel

Both EN 1.1203 steel and ACI-ASTM CT15C steel are iron alloys. They have 46% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.1203 steel and the bottom bar is ACI-ASTM CT15C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 230
140
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 12 to 15
23
Fatigue Strength, MPa 210 to 310
130
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
76
Tensile Strength: Ultimate (UTS), MPa 690 to 780
500
Tensile Strength: Yield (Proof), MPa 340 to 480
190

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 400
1080
Melting Completion (Liquidus), °C 1460
1410
Melting Onset (Solidus), °C 1420
1360
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 48
12
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
36
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.4
6.1
Embodied Energy, MJ/kg 19
88
Embodied Water, L/kg 47
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 69 to 100
90
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 610
93
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25 to 28
17
Strength to Weight: Bending, points 22 to 24
17
Thermal Diffusivity, mm2/s 13
3.2
Thermal Shock Resistance, points 22 to 25
12

Alloy Composition

Carbon (C), % 0.52 to 0.6
0.050 to 0.15
Chromium (Cr), % 0 to 0.4
19 to 21
Iron (Fe), % 97.1 to 98.9
40.3 to 49.2
Manganese (Mn), % 0.6 to 0.9
0.15 to 1.5
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
31 to 34
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0 to 0.4
0.15 to 1.5
Sulfur (S), % 0 to 0.035
0 to 0.030