MakeItFrom.com
Menu (ESC)

EN 1.1203 Steel vs. ASTM A356 Grade 2

Both EN 1.1203 steel and ASTM A356 grade 2 are iron alloys. They have a very high 99% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.1203 steel and the bottom bar is ASTM A356 grade 2.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 230
150
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12 to 15
25
Fatigue Strength, MPa 210 to 310
200
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Tensile Strength: Ultimate (UTS), MPa 690 to 780
510
Tensile Strength: Yield (Proof), MPa 340 to 480
270

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
410
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 48
51
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
2.4
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.5
Embodied Energy, MJ/kg 19
20
Embodied Water, L/kg 47
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 69 to 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 610
190
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25 to 28
18
Strength to Weight: Bending, points 22 to 24
18
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 22 to 25
15

Alloy Composition

Carbon (C), % 0.52 to 0.6
0 to 0.25
Chromium (Cr), % 0 to 0.4
0
Iron (Fe), % 97.1 to 98.9
97.7 to 99.55
Manganese (Mn), % 0.6 to 0.9
0 to 0.7
Molybdenum (Mo), % 0 to 0.1
0.45 to 0.65
Nickel (Ni), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 0.4
0 to 0.6
Sulfur (S), % 0 to 0.035
0 to 0.030