MakeItFrom.com
Menu (ESC)

EN 1.1203 Steel vs. EN 1.5503 Steel

Both EN 1.1203 steel and EN 1.5503 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.1203 steel and the bottom bar is EN 1.5503 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 230
120 to 160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12 to 15
12 to 17
Fatigue Strength, MPa 210 to 310
180 to 280
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Shear Strength, MPa 420 to 480
270 to 320
Tensile Strength: Ultimate (UTS), MPa 690 to 780
400 to 520
Tensile Strength: Yield (Proof), MPa 340 to 480
270 to 430

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 48
52
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
1.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 19
18
Embodied Water, L/kg 47
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 69 to 100
41 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 610
200 to 490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25 to 28
14 to 19
Strength to Weight: Bending, points 22 to 24
15 to 18
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 22 to 25
12 to 15

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0.52 to 0.6
0.16 to 0.2
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 97.1 to 98.9
98.4 to 99.239
Manganese (Mn), % 0.6 to 0.9
0.6 to 0.8
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.3
Sulfur (S), % 0 to 0.035
0 to 0.025