MakeItFrom.com
Menu (ESC)

EN 1.1203 Steel vs. CC381H Copper-nickel

EN 1.1203 steel belongs to the iron alloys classification, while CC381H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.1203 steel and the bottom bar is CC381H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 230
91
Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 12 to 15
20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
52
Tensile Strength: Ultimate (UTS), MPa 690 to 780
380
Tensile Strength: Yield (Proof), MPa 340 to 480
140

Thermal Properties

Latent Heat of Fusion, J/g 250
240
Maximum Temperature: Mechanical, °C 400
260
Melting Completion (Liquidus), °C 1460
1180
Melting Onset (Solidus), °C 1420
1120
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 48
30
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
6.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
40
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
5.0
Embodied Energy, MJ/kg 19
73
Embodied Water, L/kg 47
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 69 to 100
60
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 610
68
Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 25 to 28
12
Strength to Weight: Bending, points 22 to 24
13
Thermal Diffusivity, mm2/s 13
8.4
Thermal Shock Resistance, points 22 to 25
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0.52 to 0.6
0 to 0.030
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0
64.5 to 69.9
Iron (Fe), % 97.1 to 98.9
0.5 to 1.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.6 to 0.9
0.6 to 1.2
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
29 to 31
Phosphorus (P), % 0 to 0.035
0 to 0.010
Silicon (Si), % 0 to 0.4
0 to 0.1
Sulfur (S), % 0 to 0.035
0 to 0.010
Zinc (Zn), % 0
0 to 0.5