MakeItFrom.com
Menu (ESC)

EN 1.1203 Steel vs. C18100 Copper

EN 1.1203 steel belongs to the iron alloys classification, while C18100 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.1203 steel and the bottom bar is C18100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 12 to 15
8.3
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
47
Shear Strength, MPa 420 to 480
300
Tensile Strength: Ultimate (UTS), MPa 690 to 780
510
Tensile Strength: Yield (Proof), MPa 340 to 480
460

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1020
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 48
320
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
80
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
81

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 19
43
Embodied Water, L/kg 47
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 69 to 100
40
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 610
900
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 25 to 28
16
Strength to Weight: Bending, points 22 to 24
16
Thermal Diffusivity, mm2/s 13
94
Thermal Shock Resistance, points 22 to 25
18

Alloy Composition

Carbon (C), % 0.52 to 0.6
0
Chromium (Cr), % 0 to 0.4
0.4 to 1.2
Copper (Cu), % 0
98.7 to 99.49
Iron (Fe), % 97.1 to 98.9
0
Magnesium (Mg), % 0
0.030 to 0.060
Manganese (Mn), % 0.6 to 0.9
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.035
0
Zirconium (Zr), % 0
0.080 to 0.2
Residuals, % 0
0 to 0.5