MakeItFrom.com
Menu (ESC)

EN 1.1221 Steel vs. 6463 Aluminum

EN 1.1221 steel belongs to the iron alloys classification, while 6463 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.1221 steel and the bottom bar is 6463 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 250
42 to 74
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 10 to 21
9.0 to 17
Fatigue Strength, MPa 240 to 340
45 to 76
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
26
Shear Strength, MPa 450 to 520
86 to 150
Tensile Strength: Ultimate (UTS), MPa 730 to 870
140 to 230
Tensile Strength: Yield (Proof), MPa 390 to 550
82 to 200

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 400
160
Melting Completion (Liquidus), °C 1460
660
Melting Onset (Solidus), °C 1410
620
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 48
190 to 210
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
50 to 55
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
170 to 180

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.5
8.3
Embodied Energy, MJ/kg 19
150
Embodied Water, L/kg 47
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67 to 130
17 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 800
50 to 300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 26 to 31
14 to 24
Strength to Weight: Bending, points 23 to 26
22 to 31
Thermal Diffusivity, mm2/s 13
79 to 86
Thermal Shock Resistance, points 23 to 28
6.3 to 10

Alloy Composition

Aluminum (Al), % 0
97.9 to 99.4
Carbon (C), % 0.57 to 0.65
0
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 97.1 to 98.8
0 to 0.15
Magnesium (Mg), % 0
0.45 to 0.9
Manganese (Mn), % 0.6 to 0.9
0 to 0.050
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.4
0.2 to 0.6
Sulfur (S), % 0 to 0.035
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15