MakeItFrom.com
Menu (ESC)

EN 1.1221 Steel vs. CC494K Bronze

EN 1.1221 steel belongs to the iron alloys classification, while CC494K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.1221 steel and the bottom bar is CC494K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 250
67
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 10 to 21
7.6
Poisson's Ratio 0.29
0.35
Shear Modulus, GPa 72
39
Tensile Strength: Ultimate (UTS), MPa 730 to 870
210
Tensile Strength: Yield (Proof), MPa 390 to 550
94

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 400
160
Melting Completion (Liquidus), °C 1460
970
Melting Onset (Solidus), °C 1410
890
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 48
63
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
16
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
16

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
31
Density, g/cm3 7.8
9.1
Embodied Carbon, kg CO2/kg material 1.5
3.1
Embodied Energy, MJ/kg 19
50
Embodied Water, L/kg 47
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67 to 130
13
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 800
43
Stiffness to Weight: Axial, points 13
6.4
Stiffness to Weight: Bending, points 24
17
Strength to Weight: Axial, points 26 to 31
6.5
Strength to Weight: Bending, points 23 to 26
8.8
Thermal Diffusivity, mm2/s 13
19
Thermal Shock Resistance, points 23 to 28
7.8

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0.57 to 0.65
0
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0
78 to 87
Iron (Fe), % 97.1 to 98.8
0 to 0.25
Lead (Pb), % 0
8.0 to 10
Manganese (Mn), % 0.6 to 0.9
0 to 0.2
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0 to 2.0
Phosphorus (P), % 0 to 0.035
0 to 0.1
Silicon (Si), % 0 to 0.4
0 to 0.010
Sulfur (S), % 0 to 0.035
0 to 0.1
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
0 to 2.0