MakeItFrom.com
Menu (ESC)

EN 1.1221 Steel vs. C90500 Gun Metal

EN 1.1221 steel belongs to the iron alloys classification, while C90500 gun metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.1221 steel and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 10 to 21
20
Fatigue Strength, MPa 240 to 340
90
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
40
Tensile Strength: Ultimate (UTS), MPa 730 to 870
320
Tensile Strength: Yield (Proof), MPa 390 to 550
160

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
1000
Melting Onset (Solidus), °C 1410
850
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 48
75
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
11

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
35
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.5
3.6
Embodied Energy, MJ/kg 19
59
Embodied Water, L/kg 47
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67 to 130
54
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 800
110
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 26 to 31
10
Strength to Weight: Bending, points 23 to 26
12
Thermal Diffusivity, mm2/s 13
23
Thermal Shock Resistance, points 23 to 28
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.57 to 0.65
0
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 97.1 to 98.8
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.6 to 0.9
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0 to 1.0
Phosphorus (P), % 0 to 0.035
0 to 1.5
Silicon (Si), % 0 to 0.4
0 to 0.0050
Sulfur (S), % 0 to 0.035
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
1.0 to 3.0
Residuals, % 0
0 to 0.3