MakeItFrom.com
Menu (ESC)

EN 1.1221 Steel vs. C96800 Copper

EN 1.1221 steel belongs to the iron alloys classification, while C96800 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.1221 steel and the bottom bar is C96800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 10 to 21
3.4
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
46
Tensile Strength: Ultimate (UTS), MPa 730 to 870
1010
Tensile Strength: Yield (Proof), MPa 390 to 550
860

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Maximum Temperature: Mechanical, °C 400
220
Melting Completion (Liquidus), °C 1460
1120
Melting Onset (Solidus), °C 1410
1060
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 48
52
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
10
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
10

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
34
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.5
3.4
Embodied Energy, MJ/kg 19
52
Embodied Water, L/kg 47
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67 to 130
33
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 800
3000
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 26 to 31
32
Strength to Weight: Bending, points 23 to 26
25
Thermal Diffusivity, mm2/s 13
15
Thermal Shock Resistance, points 23 to 28
35

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Carbon (C), % 0.57 to 0.65
0
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0
87.1 to 90.5
Iron (Fe), % 97.1 to 98.8
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 0.6 to 0.9
0.050 to 0.3
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
9.5 to 10.5
Phosphorus (P), % 0 to 0.035
0 to 0.0050
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.035
0 to 0.0025
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5