MakeItFrom.com
Menu (ESC)

EN 1.1221 Steel vs. N06035 Nickel

EN 1.1221 steel belongs to the iron alloys classification, while N06035 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.1221 steel and the bottom bar is N06035 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 10 to 21
34
Fatigue Strength, MPa 240 to 340
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
84
Shear Strength, MPa 450 to 520
440
Tensile Strength: Ultimate (UTS), MPa 730 to 870
660
Tensile Strength: Yield (Proof), MPa 390 to 550
270

Thermal Properties

Latent Heat of Fusion, J/g 250
340
Maximum Temperature: Mechanical, °C 400
1030
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1410
1390
Specific Heat Capacity, J/kg-K 470
450
Thermal Expansion, µm/m-K 12
13

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
60
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 1.5
10
Embodied Energy, MJ/kg 19
140
Embodied Water, L/kg 47
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67 to 130
180
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 800
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26 to 31
22
Strength to Weight: Bending, points 23 to 26
20
Thermal Shock Resistance, points 23 to 28
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0.57 to 0.65
0 to 0.050
Chromium (Cr), % 0 to 0.4
32.3 to 34.3
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 97.1 to 98.8
0 to 2.0
Manganese (Mn), % 0.6 to 0.9
0 to 0.5
Molybdenum (Mo), % 0 to 0.1
7.6 to 9.0
Nickel (Ni), % 0 to 0.4
51.1 to 60.2
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 0.6
Sulfur (S), % 0 to 0.035
0 to 0.015
Tungsten (W), % 0
0 to 0.6
Vanadium (V), % 0
0 to 0.2