MakeItFrom.com
Menu (ESC)

EN 1.1221 Steel vs. S44537 Stainless Steel

Both EN 1.1221 steel and S44537 stainless steel are iron alloys. They have 75% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.1221 steel and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 250
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 10 to 21
21
Fatigue Strength, MPa 240 to 340
230
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 72
79
Shear Strength, MPa 450 to 520
320
Tensile Strength: Ultimate (UTS), MPa 730 to 870
510
Tensile Strength: Yield (Proof), MPa 390 to 550
360

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
1000
Melting Completion (Liquidus), °C 1460
1480
Melting Onset (Solidus), °C 1410
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 48
21
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
19
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.5
3.4
Embodied Energy, MJ/kg 19
50
Embodied Water, L/kg 47
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67 to 130
95
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 800
320
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 26 to 31
18
Strength to Weight: Bending, points 23 to 26
18
Thermal Diffusivity, mm2/s 13
5.6
Thermal Shock Resistance, points 23 to 28
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0.57 to 0.65
0 to 0.030
Chromium (Cr), % 0 to 0.4
20 to 24
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 97.1 to 98.8
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0.6 to 0.9
0 to 0.8
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.035
0 to 0.050
Silicon (Si), % 0 to 0.4
0.1 to 0.6
Sulfur (S), % 0 to 0.035
0 to 0.0060
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0