MakeItFrom.com
Menu (ESC)

EN 1.1221 Steel vs. S64512 Stainless Steel

Both EN 1.1221 steel and S64512 stainless steel are iron alloys. They have 84% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.1221 steel and the bottom bar is S64512 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 250
330
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 10 to 21
17
Fatigue Strength, MPa 240 to 340
540
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
76
Shear Strength, MPa 450 to 520
700
Tensile Strength: Ultimate (UTS), MPa 730 to 870
1140
Tensile Strength: Yield (Proof), MPa 390 to 550
890

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
750
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 48
28
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
10
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
3.3
Embodied Energy, MJ/kg 19
47
Embodied Water, L/kg 47
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67 to 130
180
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 800
2020
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 26 to 31
40
Strength to Weight: Bending, points 23 to 26
31
Thermal Diffusivity, mm2/s 13
7.5
Thermal Shock Resistance, points 23 to 28
42

Alloy Composition

Carbon (C), % 0.57 to 0.65
0.080 to 0.15
Chromium (Cr), % 0 to 0.4
11 to 12.5
Iron (Fe), % 97.1 to 98.8
80.6 to 84.7
Manganese (Mn), % 0.6 to 0.9
0.5 to 0.9
Molybdenum (Mo), % 0 to 0.1
1.5 to 2.0
Nickel (Ni), % 0 to 0.4
2.0 to 3.0
Nitrogen (N), % 0
0.010 to 0.050
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.35
Sulfur (S), % 0 to 0.035
0 to 0.025
Vanadium (V), % 0
0.25 to 0.4