MakeItFrom.com
Menu (ESC)

EN 1.3505 Steel vs. 5049 Aluminum

EN 1.3505 steel belongs to the iron alloys classification, while 5049 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3505 steel and the bottom bar is 5049 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 210
52 to 88
Elastic (Young's, Tensile) Modulus, GPa 190
69
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
26
Tensile Strength: Ultimate (UTS), MPa 600 to 690
210 to 330

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 430
190
Melting Completion (Liquidus), °C 1450
650
Melting Onset (Solidus), °C 1410
620
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 45
140
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
35
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
110

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.5
8.5
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 52
1180

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 22 to 25
22 to 34
Strength to Weight: Bending, points 20 to 22
29 to 39
Thermal Diffusivity, mm2/s 12
56
Thermal Shock Resistance, points 18 to 20
9.3 to 15

Alloy Composition

Aluminum (Al), % 0 to 0.050
94.7 to 97.9
Carbon (C), % 0.93 to 1.1
0
Chromium (Cr), % 1.4 to 1.6
0 to 0.3
Copper (Cu), % 0 to 0.3
0 to 0.1
Iron (Fe), % 97.1 to 98.3
0 to 0.5
Magnesium (Mg), % 0
1.6 to 2.5
Manganese (Mn), % 0.25 to 0.45
0.5 to 1.1
Molybdenum (Mo), % 0 to 0.1
0
Oxygen (O), % 0 to 0.0015
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.15 to 0.35
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15