MakeItFrom.com
Menu (ESC)

EN 1.3505 Steel vs. 520.0 Aluminum

EN 1.3505 steel belongs to the iron alloys classification, while 520.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3505 steel and the bottom bar is 520.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 210
75
Elastic (Young's, Tensile) Modulus, GPa 190
66
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
25
Tensile Strength: Ultimate (UTS), MPa 600 to 690
330

Thermal Properties

Latent Heat of Fusion, J/g 250
390
Maximum Temperature: Mechanical, °C 430
170
Melting Completion (Liquidus), °C 1450
600
Melting Onset (Solidus), °C 1410
480
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 45
87
Thermal Expansion, µm/m-K 13
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
21
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
72

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 1.5
9.8
Embodied Energy, MJ/kg 20
160
Embodied Water, L/kg 52
1170

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
52
Strength to Weight: Axial, points 22 to 25
35
Strength to Weight: Bending, points 20 to 22
41
Thermal Diffusivity, mm2/s 12
37
Thermal Shock Resistance, points 18 to 20
14

Alloy Composition

Aluminum (Al), % 0 to 0.050
87.9 to 90.5
Carbon (C), % 0.93 to 1.1
0
Chromium (Cr), % 1.4 to 1.6
0
Copper (Cu), % 0 to 0.3
0 to 0.25
Iron (Fe), % 97.1 to 98.3
0 to 0.3
Magnesium (Mg), % 0
9.5 to 10.6
Manganese (Mn), % 0.25 to 0.45
0 to 0.15
Molybdenum (Mo), % 0 to 0.1
0
Oxygen (O), % 0 to 0.0015
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.15 to 0.35
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15