MakeItFrom.com
Menu (ESC)

EN 1.3505 Steel vs. AWS ER90S-B9

Both EN 1.3505 steel and AWS ER90S-B9 are iron alloys. They have 90% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.3505 steel and the bottom bar is AWS ER90S-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
75
Tensile Strength: Ultimate (UTS), MPa 600 to 690
690

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 45
25
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
2.6
Embodied Energy, MJ/kg 20
37
Embodied Water, L/kg 52
91

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22 to 25
25
Strength to Weight: Bending, points 20 to 22
22
Thermal Diffusivity, mm2/s 12
6.9
Thermal Shock Resistance, points 18 to 20
19

Alloy Composition

Aluminum (Al), % 0 to 0.050
0 to 0.040
Carbon (C), % 0.93 to 1.1
0.070 to 0.13
Chromium (Cr), % 1.4 to 1.6
8.0 to 10.5
Copper (Cu), % 0 to 0.3
0 to 0.2
Iron (Fe), % 97.1 to 98.3
84.4 to 90.7
Manganese (Mn), % 0.25 to 0.45
0 to 1.2
Molybdenum (Mo), % 0 to 0.1
0.85 to 1.2
Nickel (Ni), % 0
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Oxygen (O), % 0 to 0.0015
0
Phosphorus (P), % 0 to 0.025
0 to 0.010
Silicon (Si), % 0.15 to 0.35
0.15 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Vanadium (V), % 0
0.15 to 0.3
Residuals, % 0
0 to 0.5