MakeItFrom.com
Menu (ESC)

EN 1.3505 Steel vs. EN 1.7767 Steel

Both EN 1.3505 steel and EN 1.7767 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.3505 steel and the bottom bar is EN 1.7767 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 210
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
74
Tensile Strength: Ultimate (UTS), MPa 600 to 690
670 to 690

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 430
480
Melting Completion (Liquidus), °C 1450
1470
Melting Onset (Solidus), °C 1410
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 45
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
4.5
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.5
2.4
Embodied Energy, MJ/kg 20
33
Embodied Water, L/kg 52
64

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22 to 25
24
Strength to Weight: Bending, points 20 to 22
22
Thermal Diffusivity, mm2/s 12
11
Thermal Shock Resistance, points 18 to 20
19 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Carbon (C), % 0.93 to 1.1
0.1 to 0.15
Chromium (Cr), % 1.4 to 1.6
2.8 to 3.3
Copper (Cu), % 0 to 0.3
0 to 0.25
Iron (Fe), % 97.1 to 98.3
93.8 to 95.8
Manganese (Mn), % 0.25 to 0.45
0.3 to 0.6
Molybdenum (Mo), % 0 to 0.1
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.012
Oxygen (O), % 0 to 0.0015
0
Phosphorus (P), % 0 to 0.025
0 to 0.015
Silicon (Si), % 0.15 to 0.35
0 to 0.15
Sulfur (S), % 0 to 0.030
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.2 to 0.3