MakeItFrom.com
Menu (ESC)

EN 1.3518 Steel vs. 206.0 Aluminum

EN 1.3518 steel belongs to the iron alloys classification, while 206.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3518 steel and the bottom bar is 206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
95 to 110
Elastic (Young's, Tensile) Modulus, GPa 190
71
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
27
Tensile Strength: Ultimate (UTS), MPa 630
330 to 440

Thermal Properties

Latent Heat of Fusion, J/g 260
390
Maximum Temperature: Mechanical, °C 420
170
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1400
570
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 43
120
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
33
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
99

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 1.5
8.0
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 51
1150

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 23
30 to 40
Strength to Weight: Bending, points 21
35 to 42
Thermal Diffusivity, mm2/s 12
46
Thermal Shock Resistance, points 19
17 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.050
93.3 to 95.3
Carbon (C), % 0.93 to 1.1
0
Chromium (Cr), % 0.9 to 1.2
0
Copper (Cu), % 0 to 0.3
4.2 to 5.0
Iron (Fe), % 96.3 to 97.8
0 to 0.15
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0.9 to 1.2
0.2 to 0.5
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0 to 0.0015
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.45 to 0.75
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15