MakeItFrom.com
Menu (ESC)

EN 1.3518 Steel vs. 383.0 Aluminum

EN 1.3518 steel belongs to the iron alloys classification, while 383.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3518 steel and the bottom bar is 383.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
75
Elastic (Young's, Tensile) Modulus, GPa 190
73
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
28
Tensile Strength: Ultimate (UTS), MPa 630
280

Thermal Properties

Latent Heat of Fusion, J/g 260
540
Maximum Temperature: Mechanical, °C 420
170
Melting Completion (Liquidus), °C 1440
580
Melting Onset (Solidus), °C 1400
540
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 43
96
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
23
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
74

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
10
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 1.5
7.5
Embodied Energy, MJ/kg 20
140
Embodied Water, L/kg 51
1030

Common Calculations

Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 23
28
Strength to Weight: Bending, points 21
34
Thermal Diffusivity, mm2/s 12
39
Thermal Shock Resistance, points 19
13

Alloy Composition

Aluminum (Al), % 0 to 0.050
79.7 to 88.5
Carbon (C), % 0.93 to 1.1
0
Chromium (Cr), % 0.9 to 1.2
0
Copper (Cu), % 0 to 0.3
2.0 to 3.0
Iron (Fe), % 96.3 to 97.8
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0.9 to 1.2
0 to 0.5
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 0.3
Oxygen (O), % 0 to 0.0015
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.45 to 0.75
9.5 to 11.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5