MakeItFrom.com
Menu (ESC)

EN 1.3518 Steel vs. 6081 Aluminum

EN 1.3518 steel belongs to the iron alloys classification, while 6081 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3518 steel and the bottom bar is 6081 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
26
Tensile Strength: Ultimate (UTS), MPa 630
310

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 420
160
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1400
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 43
180
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
47
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
160

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.5
8.3
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 51
1180

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 23
32
Strength to Weight: Bending, points 21
37
Thermal Diffusivity, mm2/s 12
74
Thermal Shock Resistance, points 19
14

Alloy Composition

Aluminum (Al), % 0 to 0.050
96.3 to 98.6
Carbon (C), % 0.93 to 1.1
0
Chromium (Cr), % 0.9 to 1.2
0 to 0.1
Copper (Cu), % 0 to 0.3
0 to 0.1
Iron (Fe), % 96.3 to 97.8
0 to 0.5
Magnesium (Mg), % 0
0.6 to 1.0
Manganese (Mn), % 0.9 to 1.2
0.1 to 0.45
Molybdenum (Mo), % 0 to 0.1
0
Oxygen (O), % 0 to 0.0015
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.45 to 0.75
0.7 to 1.1
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15