MakeItFrom.com
Menu (ESC)

EN 1.3518 Steel vs. 6463 Aluminum

EN 1.3518 steel belongs to the iron alloys classification, while 6463 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3518 steel and the bottom bar is 6463 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
42 to 74
Elastic (Young's, Tensile) Modulus, GPa 190
68
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
26
Tensile Strength: Ultimate (UTS), MPa 630
140 to 230

Thermal Properties

Latent Heat of Fusion, J/g 260
400
Maximum Temperature: Mechanical, °C 420
160
Melting Completion (Liquidus), °C 1440
660
Melting Onset (Solidus), °C 1400
620
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 43
190 to 210
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
50 to 55
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
170 to 180

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.5
8.3
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 51
1190

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 23
14 to 24
Strength to Weight: Bending, points 21
22 to 31
Thermal Diffusivity, mm2/s 12
79 to 86
Thermal Shock Resistance, points 19
6.3 to 10

Alloy Composition

Aluminum (Al), % 0 to 0.050
97.9 to 99.4
Carbon (C), % 0.93 to 1.1
0
Chromium (Cr), % 0.9 to 1.2
0
Copper (Cu), % 0 to 0.3
0 to 0.2
Iron (Fe), % 96.3 to 97.8
0 to 0.15
Magnesium (Mg), % 0
0.45 to 0.9
Manganese (Mn), % 0.9 to 1.2
0 to 0.050
Molybdenum (Mo), % 0 to 0.1
0
Oxygen (O), % 0 to 0.0015
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.45 to 0.75
0.2 to 0.6
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15