MakeItFrom.com
Menu (ESC)

EN 1.3536 Steel vs. 6016 Aluminum

EN 1.3536 steel belongs to the iron alloys classification, while 6016 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3536 steel and the bottom bar is 6016 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
55 to 80
Elastic (Young's, Tensile) Modulus, GPa 190
69
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Tensile Strength: Ultimate (UTS), MPa 660
200 to 280

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 440
160
Melting Completion (Liquidus), °C 1450
660
Melting Onset (Solidus), °C 1410
610
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 41
190 to 210
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
48 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
160 to 180

Otherwise Unclassified Properties

Base Metal Price, % relative 2.9
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.6
8.2
Embodied Energy, MJ/kg 21
150
Embodied Water, L/kg 55
1180

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 23
21 to 29
Strength to Weight: Bending, points 22
29 to 35
Thermal Diffusivity, mm2/s 11
77 to 86
Thermal Shock Resistance, points 19
9.1 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.050
96.4 to 98.8
Carbon (C), % 0.93 to 1.1
0
Chromium (Cr), % 1.7 to 2.0
0 to 0.1
Copper (Cu), % 0 to 0.3
0 to 0.2
Iron (Fe), % 96 to 97.4
0 to 0.5
Magnesium (Mg), % 0
0.25 to 0.6
Manganese (Mn), % 0.6 to 0.8
0 to 0.2
Molybdenum (Mo), % 0.2 to 0.35
0
Oxygen (O), % 0 to 0.0015
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.15 to 0.45
1.0 to 1.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15