MakeItFrom.com
Menu (ESC)

EN 1.3536 Steel vs. EN 1.0255 Steel

Both EN 1.3536 steel and EN 1.0255 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.3536 steel and the bottom bar is EN 1.0255 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
120
Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 660
430

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 440
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 41
40
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 2.9
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
1.5
Embodied Energy, MJ/kg 21
19
Embodied Water, L/kg 55
49

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23
15
Strength to Weight: Bending, points 22
16
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 19
14

Alloy Composition

Aluminum (Al), % 0 to 0.050
0.020 to 0.2
Carbon (C), % 0.93 to 1.1
0 to 0.16
Chromium (Cr), % 1.7 to 2.0
0 to 0.3
Copper (Cu), % 0 to 0.3
0 to 0.3
Iron (Fe), % 96 to 97.4
94.1 to 99.98
Manganese (Mn), % 0.6 to 0.8
0 to 1.2
Molybdenum (Mo), % 0.2 to 0.35
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Oxygen (O), % 0 to 0.0015
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0.15 to 0.45
0 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020