MakeItFrom.com
Menu (ESC)

EN 1.3538 Steel vs. 295.0 Aluminum

EN 1.3538 steel belongs to the iron alloys classification, while 295.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3538 steel and the bottom bar is 295.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 220
60 to 93
Elastic (Young's, Tensile) Modulus, GPa 190
71
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 670 to 740
230 to 280

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 440
170
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
530
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 41
140
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
35
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
100

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
10
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 1.6
7.9
Embodied Energy, MJ/kg 21
150
Embodied Water, L/kg 56
1140

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 24 to 26
21 to 26
Strength to Weight: Bending, points 22 to 23
27 to 32
Thermal Diffusivity, mm2/s 11
54
Thermal Shock Resistance, points 20 to 22
9.8 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.050
91.4 to 95.3
Carbon (C), % 0.93 to 1.1
0
Chromium (Cr), % 1.7 to 2.0
0
Copper (Cu), % 0 to 0.3
4.0 to 5.0
Iron (Fe), % 96 to 97.2
0 to 1.0
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 0.6 to 0.8
0 to 0.35
Molybdenum (Mo), % 0.4 to 0.5
0
Oxygen (O), % 0 to 0.0015
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.15 to 0.35
0.7 to 1.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15