MakeItFrom.com
Menu (ESC)

EN 1.3538 Steel vs. EN 1.0453 Steel

Both EN 1.3538 steel and EN 1.0453 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.3538 steel and the bottom bar is EN 1.0453 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 220
140
Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 670 to 740
490

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 440
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 41
49
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
1.5
Embodied Energy, MJ/kg 21
20
Embodied Water, L/kg 56
49

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24 to 26
17
Strength to Weight: Bending, points 22 to 23
18
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 20 to 22
15

Alloy Composition

Aluminum (Al), % 0 to 0.050
0.020 to 0.060
Carbon (C), % 0.93 to 1.1
0 to 0.2
Chromium (Cr), % 1.7 to 2.0
0 to 0.3
Copper (Cu), % 0 to 0.3
0 to 0.3
Iron (Fe), % 96 to 97.2
96.9 to 99.38
Manganese (Mn), % 0.6 to 0.8
0.6 to 1.4
Molybdenum (Mo), % 0.4 to 0.5
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Oxygen (O), % 0 to 0.0015
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0.15 to 0.35
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020