MakeItFrom.com
Menu (ESC)

EN 1.3539 Steel vs. C91000 Bronze

EN 1.3539 steel belongs to the iron alloys classification, while C91000 bronze belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.3539 steel and the bottom bar is C91000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
180
Elastic (Young's, Tensile) Modulus, GPa 190
110
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
39
Tensile Strength: Ultimate (UTS), MPa 670
230

Thermal Properties

Latent Heat of Fusion, J/g 260
180
Maximum Temperature: Mechanical, °C 450
160
Melting Completion (Liquidus), °C 1450
960
Melting Onset (Solidus), °C 1410
820
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 39
64
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
37
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 1.7
4.1
Embodied Energy, MJ/kg 22
67
Embodied Water, L/kg 57
420

Common Calculations

Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 24
7.5
Strength to Weight: Bending, points 22
9.7
Thermal Diffusivity, mm2/s 11
20
Thermal Shock Resistance, points 20
8.8

Alloy Composition

Aluminum (Al), % 0 to 0.050
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.93 to 1.1
0
Chromium (Cr), % 1.8 to 2.1
0
Copper (Cu), % 0 to 0.3
84 to 86
Iron (Fe), % 95.2 to 96.5
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.8 to 1.1
0
Molybdenum (Mo), % 0.5 to 0.6
0
Nickel (Ni), % 0
0 to 0.8
Oxygen (O), % 0 to 0.0015
0
Phosphorus (P), % 0 to 0.025
0 to 1.5
Silicon (Si), % 0.4 to 0.6
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
14 to 16
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.6