MakeItFrom.com
Menu (ESC)

EN 1.3542 Stainless Steel vs. 2030 Aluminum

EN 1.3542 stainless steel belongs to the iron alloys classification, while 2030 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3542 stainless steel and the bottom bar is 2030 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 720
370 to 420

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Maximum Temperature: Mechanical, °C 770
190
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
510
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 29
130
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
34
Electrical Conductivity: Equal Weight (Specific), % IACS 3.6
99

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
10
Density, g/cm3 7.7
3.1
Embodied Carbon, kg CO2/kg material 2.0
8.0
Embodied Energy, MJ/kg 29
150
Embodied Water, L/kg 100
1140

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 26
33 to 38
Strength to Weight: Bending, points 23
37 to 40
Thermal Diffusivity, mm2/s 7.9
50
Thermal Shock Resistance, points 26
16 to 19

Alloy Composition

Aluminum (Al), % 0
88.9 to 95.2
Bismuth (Bi), % 0
0 to 0.2
Carbon (C), % 0.6 to 0.7
0
Chromium (Cr), % 12.5 to 14.5
0 to 0.1
Copper (Cu), % 0
3.3 to 4.5
Iron (Fe), % 82.7 to 87.5
0 to 0.7
Lead (Pb), % 0
0.8 to 1.5
Magnesium (Mg), % 0
0.5 to 1.3
Manganese (Mn), % 0 to 1.0
0.2 to 1.0
Molybdenum (Mo), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3