MakeItFrom.com
Menu (ESC)

EN 1.3542 Stainless Steel vs. 705.0 Aluminum

EN 1.3542 stainless steel belongs to the iron alloys classification, while 705.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3542 stainless steel and the bottom bar is 705.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
62 to 65
Elastic (Young's, Tensile) Modulus, GPa 190
69
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 720
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Maximum Temperature: Mechanical, °C 770
180
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
610
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 29
140
Thermal Expansion, µm/m-K 10
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
34
Electrical Conductivity: Equal Weight (Specific), % IACS 3.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
9.5
Density, g/cm3 7.7
2.8
Embodied Carbon, kg CO2/kg material 2.0
8.4
Embodied Energy, MJ/kg 29
150
Embodied Water, L/kg 100
1170

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 26
24 to 26
Strength to Weight: Bending, points 23
31 to 32
Thermal Diffusivity, mm2/s 7.9
55
Thermal Shock Resistance, points 26
11

Alloy Composition

Aluminum (Al), % 0
92.3 to 98.6
Carbon (C), % 0.6 to 0.7
0
Chromium (Cr), % 12.5 to 14.5
0 to 0.4
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 82.7 to 87.5
0 to 0.8
Magnesium (Mg), % 0
1.4 to 1.8
Manganese (Mn), % 0 to 1.0
0 to 0.6
Molybdenum (Mo), % 0 to 0.75
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 3.3
Residuals, % 0
0 to 0.15