MakeItFrom.com
Menu (ESC)

EN 1.3549 Stainless Steel vs. 6082 Aluminum

EN 1.3549 stainless steel belongs to the iron alloys classification, while 6082 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3549 stainless steel and the bottom bar is 6082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
40 to 95
Elastic (Young's, Tensile) Modulus, GPa 200
69
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 730
140 to 340

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1390
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 21
160
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
42
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
140

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.6
8.3
Embodied Energy, MJ/kg 37
150
Embodied Water, L/kg 130
1170

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 27
14 to 35
Strength to Weight: Bending, points 24
21 to 40
Thermal Diffusivity, mm2/s 5.6
67
Thermal Shock Resistance, points 26
6.0 to 15

Alloy Composition

Aluminum (Al), % 0
95.2 to 98.3
Carbon (C), % 0.85 to 1.0
0
Chromium (Cr), % 17 to 19
0 to 0.25
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 77.5 to 82
0 to 0.5
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 1.0
0.4 to 1.0
Molybdenum (Mo), % 0.9 to 1.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.7 to 1.3
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0.070 to 0.12
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15