MakeItFrom.com
Menu (ESC)

EN 1.3551 Steel vs. 4007 Aluminum

EN 1.3551 steel belongs to the iron alloys classification, while 4007 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3551 steel and the bottom bar is 4007 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
32 to 44
Elastic (Young's, Tensile) Modulus, GPa 190
71
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 720
130 to 160

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 530
170
Melting Completion (Liquidus), °C 1490
650
Melting Onset (Solidus), °C 1450
590
Specific Heat Capacity, J/kg-K 460
890
Thermal Conductivity, W/m-K 36
170
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.6
42
Electrical Conductivity: Equal Weight (Specific), % IACS 9.9
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 7.9
2.8
Embodied Carbon, kg CO2/kg material 4.9
8.1
Embodied Energy, MJ/kg 71
150
Embodied Water, L/kg 82
1160

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 26
12 to 15
Strength to Weight: Bending, points 23
20 to 23
Thermal Diffusivity, mm2/s 9.8
67
Thermal Shock Resistance, points 21
5.5 to 6.7

Alloy Composition

Aluminum (Al), % 0
94.1 to 97.6
Carbon (C), % 0.77 to 0.85
0
Chromium (Cr), % 3.9 to 4.3
0.050 to 0.25
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0 to 0.3
0 to 0.2
Iron (Fe), % 88.8 to 91.1
0.4 to 1.0
Magnesium (Mg), % 0
0 to 0.2
Manganese (Mn), % 0.15 to 0.35
0.8 to 1.5
Molybdenum (Mo), % 4.0 to 4.5
0
Nickel (Ni), % 0
0.15 to 0.7
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.4
1.0 to 1.7
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0 to 0.25
0
Vanadium (V), % 0.9 to 1.1
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15