MakeItFrom.com
Menu (ESC)

EN 1.3553 Steel vs. 392.0 Aluminum

EN 1.3553 steel belongs to the iron alloys classification, while 392.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3553 steel and the bottom bar is 392.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
75
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
28
Tensile Strength: Ultimate (UTS), MPa 720
290

Thermal Properties

Latent Heat of Fusion, J/g 260
670
Maximum Temperature: Mechanical, °C 540
170
Melting Completion (Liquidus), °C 1620
670
Melting Onset (Solidus), °C 1570
580
Specific Heat Capacity, J/kg-K 440
900
Thermal Conductivity, W/m-K 24
130
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
25
Electrical Conductivity: Equal Weight (Specific), % IACS 11
90

Otherwise Unclassified Properties

Base Metal Price, % relative 24
10
Density, g/cm3 8.4
2.5
Embodied Carbon, kg CO2/kg material 8.5
7.5
Embodied Energy, MJ/kg 130
140
Embodied Water, L/kg 96
950

Common Calculations

Stiffness to Weight: Axial, points 13
17
Stiffness to Weight: Bending, points 23
56
Strength to Weight: Axial, points 24
32
Strength to Weight: Bending, points 21
39
Thermal Diffusivity, mm2/s 6.4
60
Thermal Shock Resistance, points 21
15

Alloy Composition

Aluminum (Al), % 0
73.9 to 80.6
Carbon (C), % 0.78 to 0.86
0
Chromium (Cr), % 3.9 to 4.3
0
Copper (Cu), % 0 to 0.3
0.4 to 0.8
Iron (Fe), % 80.7 to 83.7
0 to 1.5
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 0.4
0.2 to 0.6
Molybdenum (Mo), % 4.7 to 5.2
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.4
18 to 20
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 6.0 to 6.7
0
Vanadium (V), % 1.7 to 2.0
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5