MakeItFrom.com
Menu (ESC)

EN 1.3553 Steel vs. 5154A Aluminum

EN 1.3553 steel belongs to the iron alloys classification, while 5154A aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3553 steel and the bottom bar is 5154A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
58 to 100
Elastic (Young's, Tensile) Modulus, GPa 200
68
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 720
230 to 370

Thermal Properties

Latent Heat of Fusion, J/g 260
400
Maximum Temperature: Mechanical, °C 540
190
Melting Completion (Liquidus), °C 1620
650
Melting Onset (Solidus), °C 1570
600
Specific Heat Capacity, J/kg-K 440
900
Thermal Conductivity, W/m-K 24
130
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
32
Electrical Conductivity: Equal Weight (Specific), % IACS 11
110

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 8.5
8.8
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 96
1180

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 24
24 to 38
Strength to Weight: Bending, points 21
31 to 43
Thermal Diffusivity, mm2/s 6.4
53
Thermal Shock Resistance, points 21
10 to 16

Alloy Composition

Aluminum (Al), % 0
93.7 to 96.9
Carbon (C), % 0.78 to 0.86
0
Chromium (Cr), % 3.9 to 4.3
0 to 0.25
Copper (Cu), % 0 to 0.3
0 to 0.1
Iron (Fe), % 80.7 to 83.7
0 to 0.5
Magnesium (Mg), % 0
3.1 to 3.9
Manganese (Mn), % 0 to 0.4
0 to 0.5
Molybdenum (Mo), % 4.7 to 5.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 6.0 to 6.7
0
Vanadium (V), % 1.7 to 2.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15