MakeItFrom.com
Menu (ESC)

EN 1.3553 Steel vs. A360.0 Aluminum

EN 1.3553 steel belongs to the iron alloys classification, while A360.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3553 steel and the bottom bar is A360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
75
Elastic (Young's, Tensile) Modulus, GPa 200
72
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 720
180 to 320

Thermal Properties

Latent Heat of Fusion, J/g 260
530
Maximum Temperature: Mechanical, °C 540
170
Melting Completion (Liquidus), °C 1620
680
Melting Onset (Solidus), °C 1570
590
Specific Heat Capacity, J/kg-K 440
900
Thermal Conductivity, W/m-K 24
110
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
30
Electrical Conductivity: Equal Weight (Specific), % IACS 11
100

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.4
2.6
Embodied Carbon, kg CO2/kg material 8.5
7.8
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 96
1070

Common Calculations

Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 24
19 to 34
Strength to Weight: Bending, points 21
27 to 39
Thermal Diffusivity, mm2/s 6.4
48
Thermal Shock Resistance, points 21
8.5 to 15

Alloy Composition

Aluminum (Al), % 0
85.8 to 90.6
Carbon (C), % 0.78 to 0.86
0
Chromium (Cr), % 3.9 to 4.3
0
Copper (Cu), % 0 to 0.3
0 to 0.6
Iron (Fe), % 80.7 to 83.7
0 to 1.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 0.4
0 to 0.35
Molybdenum (Mo), % 4.7 to 5.2
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.4
9.0 to 10
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.15
Tungsten (W), % 6.0 to 6.7
0
Vanadium (V), % 1.7 to 2.0
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25