MakeItFrom.com
Menu (ESC)

EN 1.3553 Steel vs. A380.0 Aluminum

EN 1.3553 steel belongs to the iron alloys classification, while A380.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3553 steel and the bottom bar is A380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
80
Elastic (Young's, Tensile) Modulus, GPa 200
73
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 720
290

Thermal Properties

Latent Heat of Fusion, J/g 260
510
Maximum Temperature: Mechanical, °C 540
170
Melting Completion (Liquidus), °C 1620
590
Melting Onset (Solidus), °C 1570
550
Specific Heat Capacity, J/kg-K 440
870
Thermal Conductivity, W/m-K 24
96
Thermal Expansion, µm/m-K 12
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
25
Electrical Conductivity: Equal Weight (Specific), % IACS 11
78

Otherwise Unclassified Properties

Base Metal Price, % relative 24
11
Density, g/cm3 8.4
2.9
Embodied Carbon, kg CO2/kg material 8.5
7.5
Embodied Energy, MJ/kg 130
140
Embodied Water, L/kg 96
1040

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
48
Strength to Weight: Axial, points 24
28
Strength to Weight: Bending, points 21
34
Thermal Diffusivity, mm2/s 6.4
38
Thermal Shock Resistance, points 21
13

Alloy Composition

Aluminum (Al), % 0
80.3 to 89.5
Carbon (C), % 0.78 to 0.86
0
Chromium (Cr), % 3.9 to 4.3
0
Copper (Cu), % 0 to 0.3
3.0 to 4.0
Iron (Fe), % 80.7 to 83.7
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 0.4
0 to 0.5
Molybdenum (Mo), % 4.7 to 5.2
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.4
7.5 to 9.5
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.35
Tungsten (W), % 6.0 to 6.7
0
Vanadium (V), % 1.7 to 2.0
0
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5