MakeItFrom.com
Menu (ESC)

EN 1.3553 Steel vs. EN 1.4313 Stainless Steel

Both EN 1.3553 steel and EN 1.4313 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.3553 steel and the bottom bar is EN 1.4313 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 77
76
Tensile Strength: Ultimate (UTS), MPa 720
750 to 1000

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 540
780
Melting Completion (Liquidus), °C 1620
1450
Melting Onset (Solidus), °C 1570
1400
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 24
25
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 11
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
10
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 8.5
2.4
Embodied Energy, MJ/kg 130
34
Embodied Water, L/kg 96
110

Common Calculations

PREN (Pitting Resistance) 31
15
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 24
27 to 36
Strength to Weight: Bending, points 21
23 to 28
Thermal Diffusivity, mm2/s 6.4
6.7
Thermal Shock Resistance, points 21
27 to 36

Alloy Composition

Carbon (C), % 0.78 to 0.86
0 to 0.050
Chromium (Cr), % 3.9 to 4.3
12 to 14
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 80.7 to 83.7
78.5 to 84.2
Manganese (Mn), % 0 to 0.4
0 to 1.5
Molybdenum (Mo), % 4.7 to 5.2
0.3 to 0.7
Nickel (Ni), % 0
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 0.7
Sulfur (S), % 0 to 0.015
0 to 0.015
Tungsten (W), % 6.0 to 6.7
0
Vanadium (V), % 1.7 to 2.0
0