MakeItFrom.com
Menu (ESC)

EN 1.3553 Steel vs. EN 1.4565 Stainless Steel

Both EN 1.3553 steel and EN 1.4565 stainless steel are iron alloys. They have 55% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.3553 steel and the bottom bar is EN 1.4565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 77
81
Tensile Strength: Ultimate (UTS), MPa 720
880

Thermal Properties

Latent Heat of Fusion, J/g 260
310
Maximum Temperature: Mechanical, °C 540
1100
Melting Completion (Liquidus), °C 1620
1420
Melting Onset (Solidus), °C 1570
1380
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 24
12
Thermal Expansion, µm/m-K 12
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 24
28
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 8.5
5.4
Embodied Energy, MJ/kg 130
74
Embodied Water, L/kg 96
210

Common Calculations

PREN (Pitting Resistance) 31
47
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 24
31
Strength to Weight: Bending, points 21
26
Thermal Diffusivity, mm2/s 6.4
3.2
Thermal Shock Resistance, points 21
21

Alloy Composition

Carbon (C), % 0.78 to 0.86
0 to 0.030
Chromium (Cr), % 3.9 to 4.3
24 to 26
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 80.7 to 83.7
41.2 to 50.7
Manganese (Mn), % 0 to 0.4
5.0 to 7.0
Molybdenum (Mo), % 4.7 to 5.2
4.0 to 5.0
Nickel (Ni), % 0
16 to 19
Niobium (Nb), % 0
0 to 0.15
Nitrogen (N), % 0
0.3 to 0.6
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Tungsten (W), % 6.0 to 6.7
0
Vanadium (V), % 1.7 to 2.0
0