MakeItFrom.com
Menu (ESC)

EN 1.3576 Steel vs. 443.0 Aluminum

EN 1.3576 steel belongs to the iron alloys classification, while 443.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3576 steel and the bottom bar is 443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 220
41
Elastic (Young's, Tensile) Modulus, GPa 190
71
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 490 to 1420
150

Thermal Properties

Latent Heat of Fusion, J/g 250
470
Maximum Temperature: Mechanical, °C 420
180
Melting Completion (Liquidus), °C 1460
630
Melting Onset (Solidus), °C 1420
580
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 46
150
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
38
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
130

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 1.7
8.0
Embodied Energy, MJ/kg 22
150
Embodied Water, L/kg 53
1120

Common Calculations

Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
52
Strength to Weight: Axial, points 17 to 50
16
Strength to Weight: Bending, points 17 to 36
23
Thermal Diffusivity, mm2/s 12
61
Thermal Shock Resistance, points 14 to 42
6.9

Alloy Composition

Aluminum (Al), % 0 to 0.050
90.7 to 95.5
Carbon (C), % 0.17 to 0.23
0
Chromium (Cr), % 0.35 to 0.65
0 to 0.25
Copper (Cu), % 0 to 0.3
0 to 0.6
Iron (Fe), % 95.5 to 97.5
0 to 0.8
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.4 to 0.7
0 to 0.5
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 1.6 to 2.0
0
Oxygen (O), % 0 to 0.0020
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.4
4.5 to 6.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.35