MakeItFrom.com
Menu (ESC)

EN 1.3940 Stainless Steel vs. EN 1.4580 Stainless Steel

Both EN 1.3940 stainless steel and EN 1.4580 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have a very high 97% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.3940 stainless steel and the bottom bar is EN 1.4580 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
40
Fatigue Strength, MPa 190
210
Impact Strength: V-Notched Charpy, J 130
90
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Tensile Strength: Ultimate (UTS), MPa 540
620
Tensile Strength: Yield (Proof), MPa 240
250

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 410
480
Maximum Temperature: Mechanical, °C 930
950
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 17
22
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.3
4.3
Embodied Energy, MJ/kg 47
60
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 20
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
200
Resilience: Unit (Modulus of Resilience), kJ/m3 150
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
22
Strength to Weight: Bending, points 19
21
Thermal Diffusivity, mm2/s 4.1
4.0
Thermal Shock Resistance, points 16
14

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 16.5 to 18.5
16.5 to 18.5
Iron (Fe), % 64.2 to 71.4
61.4 to 71
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 12 to 14
10.5 to 13.5
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.035
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.015